
Sample surveying to estimate the mean of a heterogeneous surface:
reducing the error variance through zoning

Jinfeng Wanga*, Robert Hainingb and Zhidong Caoa

aInstitute of Geographic Sciences and Natural Resources Research, Chinese Academy of
Sciences Beijing, China; bDepartment of Geography, University of Cambridge, Cambridge, UK

(Received 3 November 2008; final version received 5 March 2009)

One of the major sources of uncertainty associated with geographical data in GIS arises
when they are the outcome of a sampling process. It is well known that when sampling
from a spatially autocorrelated homogeneous surface, stratification reduces the error
variance of the estimator of the population mean. In this study, we evaluate the efficiency
of different spatial sampling strategies when the surface is not homogeneous. When the
surface is first-order heterogeneous (the mean of the surface varies across the map), we
examine the effects of stratifying it into first-order homogeneous zones prior to the usual
stratification for a systematic or stratified random sample. We investigate the effect of this
form of spatial heterogeneity on the performance of different methods for estimating the
population mean and its error variance. We do so by distinguishing between the real
surface to be surveyed (R), the sampling frame (I) including the choice of zoning, and
the statistical estimators (Y). The study shows that zoning improves estimator efficiency
when sampling a heterogeneous surface. Systematic comparison provides rules of thumb
for choice of sample design, sample statistics and uncertainty estimation, based on
considering different spatial heterogeneities on real surfaces.

Keywords: spatial sampling; uncertainty; heterogeneity; grid strata; zoning strata;
efficiency and strategy

1. Introduction

The next 10–15 years will see great advances in real-time environmental monitoring
technologies. GIS together with spatial sampling theory and techniques are crucial to
designing monitoring networks, drawing population inferences and assessing the accuracy
of estimates such as the mean value of some attribute in an area. Compared with an
exhaustive survey, the merits of sampling lie in requiring fewer observations resulting in
lower overall cost while still being able to achieve levels of accuracy that are sufficient for
purpose (Cochran 1977).

The mean is a critical parameter in many areas where GIS is used. The need to estimate
the mean level of some attribute over a defined region when the mean is known not to be
constant across the whole region arises in environmental science. For example: estimating
crop yields across an administrative area where there are geographical differences in
topography, soil type and perhaps even weather conditions; monitoring ecosystems where
vegetation type is patchy (Huenneke et al. 2001). Air pollution displays considerable spatial
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and temporal variability and is costly to monitor so it is important to design efficient
sampling schemes to capture its spatial heterogeneity (Kumar 2009). In the case of large
regions heterogeneity (non-stationarity) is often acknowledged, but size of area is not always
the critical factor. Atmospheric elements such as coarse particulate matter, PM10–2.5, have
been found to be heterogeneously dispersed even across quite small areas (Ott et al. 2008).

Data quality is one of the major concerns in both GIScience and GIServices (Goodchild
and Gopal 1989, Haining 2003, Leung et al. 2004, Shi 2005). The analyst has particular
concerns when data are assembled from different sources and collected by different proce-
dures (Lee et al. 2006, Brus and Heuvelink 2007, Villarini and Krajewski 2008). Evaluating
the efficiency of different spatial data collection techniques and quantifying the uncertainty
associated with attribute measurements remain critical elements in the GIS research agenda.

Two well known problems that arise when estimating the mean value of an attribute in a
region is first the presence of spatial autocorrelation and second the presence of spatial
heterogeneity in the attribute. Recognizing their presence has implications for the efficiency
with which sampling is carried out – that is estimator error variance in relation to sample
design and sample size (Ripley 1981, Haining 1988, Christakos 2005).

Heterogeneous geographical areas as these are becoming increasingly important in
different areas of geographical data analysis and environmental science (Csillag et al.
1996, Goodchild and Haining 2004, Green and Plotkin 2007). The objective of the current
research is to investigate the effect of spatial heterogeneity in the mean (or first-order
heterogeneity), on the methodology of spatial sampling, and to suggest improved sampling
strategies that have lower error variances than can be achieved with current methods.
Stratified sampling is a conventional tool in surveying heterogeneous populations
(Cochran 1977), but few studies, it seems, distinguish between the real strata of the
population and the strata for sampling and statistics. It is often difficult in the spatial
dimension to construct sampling strata that are concordant with real surface heterogeneity
for physical, legal, logical, economic or cognitive reasons. This study identifies the differ-
ence and quantifies the uncertainty of a sample estimate arising from the difference between
the real strata and the strata used for sampling and statistical estimation. We report our
findings on the efficiency effects of there being a mismatch between real surface hetero-
geneity and sample stratification. Further, we explore the gains from employing two levels of
stratification – a high level or macro scale of stratification reflecting surface heterogeneity
thereby breaking an area into homogeneous subareas (zones) within which conventional grid
square or micro scale stratification is then employed.

We first give a brief review to the existing studies in spatial sampling; then discuss spatial
heterogeneity as a necessary precursor to investigating sampling efficiency and its determi-
nants; third we discuss the implications of these findings for the choice of sampling strategy;
fourth we consider theoretical and empirical examples.

2. Review

There are two approaches to spatial sampling: design-based and model-based (Brus and de
Gruijter 1997). In design-based sampling, the population of values in a region is considered
fixed and randomness enters through the process of selecting the locations to sample. The
mean value for the region is a fixed but unknown quantity and the sample mean is an
estimator of it. Repeated sampling according to a given scheme such as random sampling
will generate a distribution of estimates of the (regional or population) mean. In model-based
sampling, the set of values observed in a region represents one realization of some stochastic
model. Unlike the design-based approach, the mean for the set of values is therefore a
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random variable. Also the target of inference is not, as in the design-based approach, the
regional mean but rather the mean of the stochastic model assumed to have generated the
realized population. This conceptualisation of spatial data underlies geostatistics (Cressie
1993).

The model-based approach to sampling is most appropriate for tackling ‘where’ ques-
tions – for example, predicting values at particular locations, mapping and for estimating the
parameters of the underlying stochastic model. The design-based approach is most often
used for tackling ‘howmuch’ questions – estimating global properties such as the population
mean or the proportion of an area under a particular land use. It is for this reason that the
approach here is design-based because the target of inference is the mean, which is a global
property of the specified attribute. For an extended review of these issues see also Haining
(2003, pp. 96–99).

There are three main spatial sampling plans: random, stratified random and systematic
sampling (for descriptions see, for example, Ripley 1981, pp. 19–22; Haining 2003,
pp. 100–103). Figure 1 shows the pattern of sampling. Awidely used and intuitively simple
and robust estimator of the regional mean, �Y , is given by the sample mean:

�y ¼ 1

n

Xn
i¼1

yi (1)

where { y1, . . ., yn} represents the n sampled values. Under random sampling, where each
individual in the population (location on the map) has an equal and independent chance of
selection and the selection of any location has no effect on the selection of any other location
on the map, Equation (1) is an unbiased estimator of �Y . Unbiasedness here means that the
expected value of �y ¼ �Y , which indicates that if we were to take several random samples
from the population and calculate Equation (1) each time and then compute the average of

Figure 1. One heterogeneous population and different sampling and statistics. (The solid lines
indicate the real zones of the surface (z) and dotted lines represent the zones used for sampling
purposes and the calculation of statistics (h), the crosses indicate sampling sites.)
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these means, it would equal �Y . If data values in the population are independent, the error
variance of Equation (1) as an estimator of �Y is given by �2/n where �2 is the population
variance. The error variance calculation allows the user to determine the confidence interval
associated with a single value of �Y as an estimate of �Y . It also follows that ŝ2=n where

ŝ2 ¼ 1

n� 1

Xn
i¼1

yi � �yð Þ2 (2)

is an unbiased estimator of this error variance (see, for example, Freund 1992).
However, in the case of spatial data, although members of the sample are independent by

construction, data values that are near to one another in space are unlikely to be independent
because of a fundamental property of attributes in space, which is that they show spatial
structure or continuity (spatial autocorrelation). In this case the error variance of Equation (1)
is closely approximated by (Ripley 1981, Dunn and Harrison 1993, Griffith et al. 1994):

�2 � cov yi; yj
� �

n
(3)

where n is the size of the sample and the second term in the square brackets is the average
autocovariance between all pairs of individuals (i, j) in the population (sampled and
unsampled). Since the expected value of ŝ2 is given by (Haining 1988):

�2 � 2

n n� 1ð Þ
Xn
i¼1

Xn�1
j<1

cov yi; yj
� �

(4)

where the second term is the average autocovariance between all pairs of individuals (i, j)
in the sample, it follows that ŝ2=n again provides an unbiased estimator of the error variance
of (1).

In the case of stratified random sampling the error variance of Equation (1) is given by
(Ripley 1981, Dunn and Harrison 1993):

�2 � cov yi; yj
� �

n
(5)

where the second term inside the square brackets is the average autocovariance between all
possible pairs (k, l) within a stratum. In the case of systematic sampling the error variance of
Equation (1) is given by (Ripley 1981, Dunn and Harrison 1993):

cov yu; yvð Þ � cov yi; yj
� �

(6)

where cov yu; yvð Þ is the average autocovariance between members of the systematic sample.
The sample mean is an unbiased estimator of the population mean irrespective of

whether random, stratified random or systematic sampling is employed but different sam-
pling strategies have different error variances and hence can be compared in terms of their
relative efficiency under different assumptions about the spatial autocorrelation in the
population.
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Early work evaluating spatial sampling strategies in two dimensions include Quenouille
(1949), Das (1950), Zubrzycki (1958) andMatern (1960). These theoretical studies based on
surfaces that were the outcomes of spatially homogeneous processes (Ripley 1981) showed
that systematic sampling outperforms other sampling schemes except where there is peri-
odicity in the attribute and these findings have been generally endorsed by empirical studies
(Matern 1960, Milne 1959, Payandeh 1970, Dunn and Harrison 1993).

The work by Dunn and Harrison (1993) showed that whilst systematic sampling was the
most efficient of the three methods of sampling (and random sampling consistently the least
efficient), the gains in efficiency, relative to stratified random sampling, were highly vari-
able. They also compared two different methods of estimating the error variance of the mean
from a single systematic sample (Ripley 1981, p. 27). Their work was based on sampling real
land use maps with complex and varied spatial autocorrelation structures and their findings
suggested that the presence of non-stationarities and anisotropies in real maps could have a
severe effect on the efficiency of systematic sampling.

Map stratification, whether for stratified random or systematic sampling, usually
involves square strata and the sampler needs to decide on strata size as well as the orientation
and starting point for the overlaid grid. Typically the starting point is chosen at random and
the effect of the grid starting position on sample variability is assumed to be small. This is
probably true for the choice of grid orientation unless there are strong directionalities in the
surface as in the case for example of a repetitive ridge and valley topography. The stronger
the spatial autocorrelation on the map, with high levels over long distances, the more
redundancy will be present in a sample if the inter-point sampling distance is small
(Griffith 2005). Ripley (1981) remarks that the gain from stratification will be most when
spatial autocorrelation is large for all distances up to the scale of the strata used but becomes
negligible beyond that scale. ‘This suggests that for monotonically decreasing correlation
functions we should take small strata; hence the number of sample points per strata will be
small’ (Ripley 1981, p.24–5). If an area to be sampled is second-order heterogeneous, that is
there are different spatial autocorrelation structures in different sections of the map, then
presumably there will be efficiency gains to be achieved by adapting strata size to that
heterogeneity (Berry and Baker 1968, Dunn and Harrison 1993).

3. Spatial heterogeneity and prior information

An attribute measured on a geographical surface comprises two elements of second-order
variation: a global variance (population variance) and the spatial structure of that variation
(population spatial autocovariance or autocorrelation). Both elements of geographical var-
iation need to be recognized in designing and evaluating sample designs including the
sampling plan and the choice of estimator (Cochran 1977, Haining 1988, Griffith 2005).
For example areas showing greater variance will need to be more intensively sampled
than areas showing lesser variance to achieve the same level of error variance. However,
neither of these two elements of second-order variation may be independent of location
on the map in which case the attribute displays second-order spatial heterogeneity (or
second-order non-stationarity). A measure of population variance for an attribute may
differ significantly between different parts of a map (e.g. a mountain area compared to a
lowland area) and the spatial structure of that variation may also be location dependent.
Second-order spatial heterogeneity is a frequently occurring property of attributes across a
geographical area, particularly areas that are physically large. In addition there may be first-
order spatial heterogeneity (or first-order non-stationarity), that is the mean is also location
dependent.
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One way to represent heterogeneity is to partition a map into zones (Wang et al. 1997).
Because of the continuity of spatial variation (but with the possible exception of relatively
sharp boundaries as between for example land and sea), there is usually no ‘true’ or ‘correct’
zonation, but at any given scale of geographical detail some zonations (regional classifica-
tions) will be better than others. The best zonations create areas that are first- and second-
order homogenous although in practice, there may be limits to how good any zonation can be
because of lack of knowledge about the study area or the complexity of the surface.

Constructing zones may be based on prior knowledge, pre-sampling, an effective proxy
variable (Rodeghiero and Cescatti 2008), or on the distribution of other variables that are
known to affect the value of the attribute of interest (e.g. altitude in the case of estimating
crop yields or vegetation cover). Purposive sampling is generally more efficient than
probability sampling (Brus and de Gruijter 1997, de Gruijter et al. 2006). Usually sampling
is more intensive in areas important for human society: more signal relay stations should be
located in areas with more frequent traffic accidents (Rogerson et al. 2004), the seismic
monitoring network is denser in Beijing than in other areas of China, major crop production
areas are covered by intensive surveillance of meteorological conditions, and police are
allocated more densely in urban areas. Below we list some more examples where prior
information can be called upon to capture the heterogeneity of a surface:

l Theoretical assumptions about surfaces based on our understanding of earth processes
(Rodriguez-Iturbe and Mejia 1974, Haining 1988, Christakos 2005, Sen 2008);

l Adjunct knowledge such as a Digital Elevation Model (DEM) for land use classifica-
tion, mapping noise using distance decay from source points (Stoter et al. 2008),
various ancillary variables (soil series, relative elevation, slope, electrical conductivity
and soil surface reflectance) to estimate soil carbon stock (Simbahan and Dobermann
2006), environmental variables are interpolated using covariates for which more
detailed information are available (Brus and Heuvelink 2007);

l Regression models or data adaptive algorithms: increasing the accuracy of design-
based sampling strategies (Brus and Te Riele 2001, Almeida et al. 2008); predicting
soil distribution using explanatory variables including classical terrain factors, land
cover and lithology maps and various channels from LANDSAT ETM imagery
(Grinand et al. 2008); and a flexible multi-source spatial-data fusion system (Li
et al. 2008).

l Mechanistic modelling. Both mathematical models, such as random field models
(Haining 1988, Christakos 2005) and location allocation models (Kumar 2009) seek
to characterize the features of the object under study and may provide complementary
prior knowledge.

We argue here that if used carefully, zoning may improve the efficiency of spatial
sampling when spatial heterogeneity is present in the surface. We can derive a population
estimate, based on a sample, which has a smaller error variance.

4. Spatial sampling efficiency

Spatial sampling can be described with reference to a triple (Y, I, R): the real surface to be
surveyed (R), the spatial sampling frame (I) that is laid down over the area and typically
takes the form of either a random, stratified random or systematic distribution of n point
locations where data are recorded and the statistic (Y) used to estimate the quantity of
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interest using the sample data. Spatial sampling efficiency depends on the choice of I and Y
given the properties of R.

4.1. Specification

We are interested in the efficiency gains from creating statistical strata I (h1, h2, . . ..,) that
correspond with the strata on a real heterogeneous surface (R), which we denote (z1, z2,
. . .,). To avoid confusion with the term ‘strata’ commonly used to refer to the subdivisions of
an area associated with stratified random and systematic sampling, we shall henceforth refer
to these as ‘zones’ – statistical zones (h) and real zones (z). We shall call the set of such zones
that partition the surface a ‘zonation’ (Figures 1(d) and (e).

To help fix ideas, Figure 2 shows a rectangular region divided into two real zones where
the northern half of the map is a surface of +s (z1) and the southern half is a surface of 0s (z2)
– a sharp boundary between two areas with no intra-zonal variation. The +s and 0s on the
maps are sample points taken by a systematic sample taken from within two statistical zones
(h1 and h2) so a + has a sample value of 1 and a 0 has a sample value of 0. So each of the
zones h1 and h2 are partitioned into strata. The 14 different cases in Figure 2 show different
statistical strata (h1, h2), shown by light background shading, laid onto the map where it is
only in the case of 1(i) there is perfect correspondence between the z and h zonations. All the
other cases represent different forms of misalignment and different types of boundaries
between the two z zones (sharp linear, crenulated and ‘fuzzy’).

We start by presenting some general results for estimator variance. As noted by Ripley
(1981, p. 27) there are two approaches to estimate the sampling or error variance of Equation
(1) in the case of a systematic sample (and in the case of a stratified random sample where
there is only one sample point per stratum). One approach uses Equation (2) and treats ŝ2=n
as the estimate of the error variance of the sample mean, the other approach (‘post hoc
stratification’) groups the strata into blocks (typically of size two, but three if boundary
conditions require it) uses Equation (2) on each of the blocks, takes the average over all the
blocks and then divides by n. Ripley (1981) reports a study by Milne (1959) that suggests
that either method gives a ‘good idea of the true sampling variance’. The empirical work
reported in Dunn and Harrison (1993) shows both methods overestimating the true sampling
variance but with the second method being the better of the two.

Let V(.) denote variance. Let �yzone hf g denote the sample mean calculated from a statistical
zonation {h} and �yh is the mean calculated for any one of the zones of the zonation. Then:

V �yzone hf g
� �

¼ V
XLh
h¼1

Wh�yh

" #
¼
XLh
h¼1

W 2
h V �yhð Þ ¼

1

n

XLh
h¼1

Whs
2
h (7)

where Lh is the number of statistical zones in the zonation h,Wh is the proportion of the total
sample (n) in zone h (nh/n) and S2h is the sample variance for the data from zone h.

Now it can be shown (see Appendix substituting zonation h for z):

V �yð Þ ¼ s2

n
¼ 1

n

XLh
h¼1

Whs
2
h þ

XLh
h¼1

Wh �yh � �Yð Þ2
" #

(8)

where s2 denotes the sample variance based on all the data. The quantity,

V �yð Þ � V ð�yzone fhgÞ ¼ 1
n
PLh
h¼1

Wh �yh � �Yð Þ2, is the efficiency difference between a zoned and
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an unzoned estimator for the sample mean. It is proportional to the zone-weighted sum of
squared differences between the zone means and the population mean. The first key
observation from these results is that the bigger the difference of the zone means �yhf g
from the population mean �Y , the larger the gain from zoning; the gain vanishes if the zone
means are all equal and hence equal to the population mean.

We nowwant to compare efficiencies arising from the difference between a true zonation
(z) and a statistical zonation (h). In the case of the zonation z, the heterogeneous surface (R)
can be partitioned into Lz zones within each of which the mean is constant but differs from

Figure 2. Maps showing relationship between real (z) and statistical (h) zones.
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the mean in any adjacent zone (so that it is not possible to merge adjacent zones and have the
mean remain constant within the new zone). It follows that:

V �yzone hf g
� � 1

n

XLh
h¼1

Whs
2
h and V �yzone zf g

� �
¼ 1

n

XLz
z¼1

Wzs
2
z

and the difference is

V �yzone hf g
� �

� V �yzone zf g
� �

¼ 1

n2

XLh
h¼1

nhs
2
h �

XLz
z¼1

nzs
2
z

 !
¼ 1

n2

XLk
k¼1

nk s2h¼k � s2z¼k
� �

(9)

under the additional assumption that L = Lz = Lk (the same number of real and statistical
zones), nh = nz = nk (the same size of sample).

The results show that the efficiency difference between biased zoned statistics (zonation
h � z) and unbiased zoned statistics (h = z) is proportional to the difference of the sum of the
sample size-weighted sampling variances. From Equations (7–9), we have

s2

n
¼ V �yð Þ � V �yzone hf g

� �
� V �yzone zf g

� �
¼ 1

n

XLz
z¼1

Wzs
2
z (10)

Zonation improves estimator efficiency because it removes the variance associated with
spatial variation in the mean. The second key observation is that the gains from zoning will
decrease as the statistical zonation {h} becomes less and less aligned with the real zonation
{z}. In order to explore this quantitatively, we return to the cases shown in Figure 2.

4.2. Numerical example

In order to illustrate the effect of zoning {h} on estimator efficiency, we calculated the
sampling variance for the mean �yð Þwhere the sample data have been obtained from a centric
systematic sample on a heterogeneous surface that comprises two homogeneous regions
(each with a constant mean and zero intra-zone variance) as shown in Figure 2. We use the
formula ŝ2=n for calculating the sampling variance. The benchmark is ŝ2=n calculated for all
100 sample points without any zoning {h}. Figure 3 shows the graph of the ratio of the
sampling variance obtained after zoning to the benchmark value and expressed as a
percentage. The sampling variance has been obtained by calculating ŝ2 for each of the two
zones separately, then averaging the two values and then dividing by n = 100. In this simple
situation, the relative efficiency calculations are determined by the number of ‘misallocated’
samples. However, even in those cases where there has been a substantial level of misalloca-
tion the gains from stratification are evident.

4.3. Spatial sampling strategy

Using the triple (Y, I, R), Figure 4 depicts four critical stages in a sampling survey and the
sources of error variance. Clearly, the earlier spatial heterogeneity can be recognized in the
design of a sample, the more likely it is that efficiency gains can be realized. For example, if
as illustrated in Section 2, there is prior knowledge about the heterogeneity in R sufficient to
construct a statistical zonation approximating to the true zonation of the real surface, then
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sampling should be conducted using that zonation in order to try to maximize sampling
efficiency. Even if there is only partial knowledge then some efficiency gains might be
achieved as suggested by the numerical examples in Section 4.2.

In the next section we turn to two empirical case studies in order to explore empirically
the effects of constructing zones on sampling variance.

5. Empirical examples

5.1. Sample surveys of non-cultivated land in Shandong province, N. E. China, 1985
and 1995

We examine, in the case of a spatially heterogeneous surface, how different sampling
strategies perform and the gains that accrue in terms of error variance of the sample mean
from partitioning the area into homogeneous (or quasi-homogeneous) zones. The study area

Figure 4. Four stages associated with spatial sampling and the accumulation of uncertainty. If given a
report with sample estimates (stage 4), they need to be assessed against the properties of the real surface
(stage 1), the distribution of the sample zones (stage 2) and the choice of estimator (stage 3). Error and
uncertainty are accumulated through the process.

Figure 3. Graph of efficiency gains as a result of zoning but with different percentages of misalloca-
tion. Calculations using the cases shown in Figure 2, based on a systematic sample and using the
random sampling formula for calculating estimator sampling variance. The case of perfect correspon-
dence between the real (z) and statistical (h) zones is taken as the benchmark.
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is the rectangle within Shandong province (see Figure 5), which was covered by aerial photos
in 1985 and 1995. The population is 144 units (12 · 12 grid) each about 520 km2. The
aerial photos are used to pick up the proportion of the non-cultivated land in each unit, and
the true values of each unit in 1985 and 1995 are shown in Figures 6(a) and (b)respectively.

Using simple random sampling as the baseline, systematic sampling and stratified
random sampling were applied together with two types of additional knowledge about
underlying spatial heterogeneity: zones defined by elevation 1985 and 1995 and zones
defined for the 1995 case study based on the evidence of heterogeneity from the 1985 survey.

Let R85 and R95 denote the surface of the true proportion of non-cultivated area in
Shandong province in 1985 and 1995, respectively. The evidence for heterogeneity in the
mean comes from Figures 6(a) and (b), which suggest an area with much higher levels of
non-cultivated land in the central area of the map in both 1985 and 1995.

TheMoran test for spatial autocorrelation (usingGeoDA, with a first-order, 0/1, neighbour
weight matrix) applied to the 1985 and 1995 surfaces gives values of 0.5476 and 0.4325
respectively, demonstrating the presence of significant positive spatial autocorrelation on both
maps (p , 0.05) although spatial autocorrelation is stronger in 1985 than in 1995. This finding
is also reflected in the parameters of the fitted spherical semi-variogram models where for
1985: range = 136 km, nugget C0 = 0.00156, sill C = 0.05442 and C0/C = 0.0287; and for
1995: range = 136 km, nugget C0 = 0.00582, sill C = 0.03622 and C0/C = 0.1608.

Figures 7(a) and (b) show the frames (I) used for systematic and stratified random
sampling, where r equals the dimensions of the square strata and f = 1/r2 equals the sampling
proportion because one sample unit is drawn from each strata. Figure 7(c) shows three zones
defined by equalizing three intervals of altitude because altitude is believed to be one of the
important determinants of cultivation; and Figure 7(d) shows four zones used on the 1995
data defined by the results of the 1985 sample survey. Minimizing the variance within each
of the zones and maximizing the variance between the zones and keeping spatial connectiv-
ity within each zone produce the zonation. In detail, we first order the values of the
proportion of non-cultivated land in 1985, delimit the series into three equal intervals,
then smooth the values over space: the value in each grid cell is replaced by the average
of a window centred at the grid cell and calculated from its surrounding 3 by 3 set of grid
values in order to guarantee spatial connectedness for each of the zones.

In the cases where randomization is involved in the sampling (simple random and
stratified random), 1000 Monte Carlo (using a Matlab program compiled by the authors)
repeated samples of size 36, 16 and 9, corresponding to sampling proportions of 1/4, 1/9 and

Figure 5. Study area (grid system) in Shandong province, East China.
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1/16, respectively, are obtained for each of the sampling frames. To maintain comparability,
Monte Carlo sampling was also used in the case of systematic sampling even though this is
not needed since all the sampling designs can be listed.

The following sampling frames disregard any spatial heterogeneity in R:

I1. Simple random sampling: drawing a sample of specified size at random from the set
of 144 cells. Sampling was done without replacement. This sampling design is used
as a benchmark.

I2. Stratified random sampling: the surface is stratified as shown in Figures 7(a) and (b)
and one sample unit is randomly drawn from each strata.

I3. Systematic sampling: as for I2 but one sample unit is taken from the same position
within each strata.

The following sampling frames allow for spatial heterogeneity in R:

I4. The surface is zoned by elevation, then the zones are stratified and stratified
sampling carried out.

Figure 6. (a) The true proportion of non-cultivated land in Shandong province in 1985. (b) The true
proportion of non-cultivated land in Shandong province in 1995.
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I5. The 1995 map is zoned using the evidence on heterogeneity from the 1985 sample
and classification algorithms (Li et al. 2008), then the zones are stratified and
stratified sampling carried out.

For each of these sampling designs (I1-I5), two statistics (Y) are calculated for each of
the three sampling fractions. The two statistics are the sample mean and the variance of the
sample mean. Since random sampling (I1) is known to have the lowest efficiency it is used
as the baseline to evaluate the efficiency of the other five sampling plans (I2–I5), which is
quantified by the design effect (deff) statistic:

deff Iið Þ ¼ V I1ð Þ
V Iið Þ ; i ¼ 2; 3; . . . ; 5 (11)

the bigger the deff, the higher the efficiency gain of the sampling design.
Tables 1 and 2 are based on the results of 1000 repeated Monte Carlo samplings. For

random sampling I1 f = 1/4, there are 36 sample units in one simple random sampling,
which are averaged to get a mean value. This sampling is repeated 1000 times to yield 1000
mean values and these are averaged to get the mean value and the variance of the mean.

We draw the following conclusions from these results.

(1) As expected stratified random and systematic sampling have consistently lower
sampling variances than random sampling. Also, the 1985 map has the higher level
of spatial autocorrelation compared to 1995 and the design effects arising from
stratification (I2 and I3) are higher for 1985 relative to 1995 in three out of the four
cases. This conclusion is consistent with the theoretical comparison between the
error variance, Equation (5), for stratified random sampling, the error variance,

Figure 7. Grids and strata used for different systematic and stratified random sampling and the zones
used to allow for heterogeneity.
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Equation (6), for systematic sampling, with the error variance �2/n of simple random
sampling.

(2) Systematic sampling is more efficient than stratified random sampling in three out of
the four cases. This also corresponds to earlier results that have suggested that
systematic sampling should outperform stratified random sampling on spatially
autocorrelated maps with no periodicities (Dunn and Harrison 1993). Maintaining
a fixed distance between sample points on a spatially autocorrelated map tends to
reduce the information redundancy in the sample since there are no sample points
that are close together which can occur with stratified random sampling.

(3) Zoning the map by elevation (I4) has not improved the efficiency of the estimator
relative to stratified random (I2) or systematic (I3) sampling. In all cases the
estimator based on I4 produces notably higher variances although it is better than
random sampling. Presumably, and contrary to earlier expectations, the distribution
of non-cultivated land is not associated with elevation. This zoning produces a less
efficient estimator since the statistical zonation corresponds poorly to the true
heterogeneity of the real surface, see Equation (10).

(4) In the case of the 1995 map, constructing zones using the experience gained from the
1985 sampling survey has produced significant improvements in efficiency relative
to stratified random and systematic sampling in both cases. This could be theoreti-
cally confirmed by comparing Equation (7) for the case of stratified random
(Equation (5)) and systematic (Equation (6)) sampling. Intuitively, a good zonation
that perfectly matched the spatial heterogeneity of the real surface would have a very
small dispersion variance, and so a very small error variance for the sample mean.

There may be a sampling proportion effect here with the benefits of zoning on the basis
of previous experience becoming more apparent when the sampling fraction is small. This
empirical example has compared findings on maps with different levels of spatial auto-
correlation but used a small data set. To explore the effects of zoning further we now consider
a second example using a much larger data set.

5.2. Sample survey of irrigated cultivated land in Shandong province, N. E. China, 2000

The study area is a rectangle of size 4320 km2 in Shandong province (see Figure 8). The
thematic mapper (TM) images in year 2000 are used to record the proportion of the
cultivated area that is irrigated. The spatial resolution is a 30 m by 30 m2 grid accumulated

Table 2. Design effects due to different methods of sampling the proportion of non-cultivated land in
Shandong in 1985 and 1995.

1985 1995

Design effect r = 2, f = 1/4 r = 3, f = 1/9 r = 2, f = 1/4 r = 3, f = 1/9

deff(I2) = V(I1)/V(I2) stratified
random

1.4439 1.5818 1.4409 1.5385

deff(I3) = V(I1)/V(I3) systematic 2.8389 1.5866 1.2818 1.6129
deff(I4) = V(I1)/V(I4) zoned by
elevation

1.0152 1.0675 1.1101 1.2862

deff(I5) = V(I1)/V(I5) zoned using
1985 survey results

3.1351 3.8462

International Journal of Geographical Information Science 537

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
I
n
s
t
 
o
f
 
G
e
o
g
r
a
p
h
i
c
a
l
 
S
c
i
e
n
c
e
s
 
&
 
N
a
t
u
r
a
l
 
R
e
s
o
u
r
c
e
s
 
R
e
s
e
a
r
c
h
]
 
A
t
:
 
0
8
:
0
5
 
1
7
 
M
a
r
c
h
 
2
0
1
0



into a 1 by 1 km2 grid system. The population is composed of 4320 units (1 · 1 km2) and the
true value of each grid unit is shown in Figure 8 as a choropleth map.

We let R00 denote the map of the true proportion of irrigated cultivated land in
Shandong province in 2000. Spatial heterogeneity in the mean is evident in Figure 8,
which suggests an area with much lower levels of irrigated cultivated land in the south
central area of the map. Moran’s statistic for spatial autocorrelation is 0.7434, evidence of
significant positive spatial autocorrelation (p , 0.05), stronger than either of the two maps
used in Example 1. The parameters of the fitted spherical semi-variogram model are range =
28 km, nugget C0 = 3.960, sill C = 15.403 and C0/C = 0.257 for 2000.

As before, random (I1), stratified random (I2) and systematic (I3) sampling are
carried out. Figure 9 displays the strata for systematic and stratified random sampling,

Figure 8. Shandong province (above) and true proportion of irrigated cultivated land (below): 2000.
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where r and f are defined as before and the zoning for (I4) is constructed by dividing
elevation into six levels, each with an equal number of cells, then applying spatial smoothing
to keep each of the zones compact.

The sampling mean and variance are calculated as before under 1000 Monte Carlo
replications. As expected random sampling (I1) has the lowest efficiency. It is used as the
baseline to evaluate the efficiency of the other three sampling plans (I2–I4) quantified by
the design effect (deff), which is calculated as before. Tables 3 and 4 report results and we
draw the following conclusions:

(1) Given the same size of sample, random sampling is the least efficient. Systematic
sampling is more efficient than stratified random sampling in all three cases (see
Section 5.1(2)).

(2) Zoning is more efficient than systematic sampling in two of the three cases (see
Section 5.1(4)). It is less efficient than systematic sampling when f = 1/9 but its
efficiency becomes more marked as the sampling fraction decreases. As with the
first example, the benefits of zoning become apparent when the sampling fraction
falls, that is the sampling points become sparse.

In conclusion it is worth stressing that these results show that different sampling
methodologies are not distinguished from one another by the point estimates of the mean
that they yield. All the methods provide similar, statistically unbiased estimates. They are

Figure 9. Systematic and stratified sampling frames and the zones used to allow for heterogeneity.
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differentiated by the error variance or uncertainty that is attached to those point estimates.
One implication of this is that zonation allows an analyst to achieve a desired level of
estimator precision with a smaller sample size – important if sampling is expensive.

6. Conclusions and discussion

Spatial sampling is one of the core techniques in both GIScience and GIServices, concerned
with the efficient collection of population data and making inferences with smaller error
variance. Understanding how to achieve high levels of sampling efficiency is likely to be of
greater importance to GIS analysts in the years ahead for the reasons discussed.

The effects of spatial structure (spatial autocorrelation) on the error variance of sampling
schemes have been the subject of systematic study dating back to the early work of Milne
(1959) and Matern (1960). The benefits of stratification for the purpose of improving the
error variance of estimators of the mean when spatial autocorrelation is present have been
well established. These results apply to homogeneous surfaces and when the semi-variogram
or the autocovariance function is available. Spatial heterogeneity in the mean, the variance
and in the structure of spatial autocorrelation are also properties of spatial populations but
appear not to have received the same systematic attention in the sampling literature.

Our results indicate that spatial heterogeneity in the mean of the real surface to be
surveyed impacts on the sampling error associated with the sample mean as an estimator of
the population mean. As the numerical examples have illustrated, if the nature of the
underlying heterogeneity is understood it can be used to improve the sampling efficiency
of the estimator of the mean because sampling efficiency is sensitive to spatial heterogeneity
in the mean of the surface to be sampled.

Table 3. Means and variances obtained from sampling the proportion of irrigated cultivated land in
Shandong province in 2000 (R00).

Sampling
methods

r = 3, f = 1/9 r = 4, f = 1/16 r = 6, f = 1/36

Min Max Mean Var. Min Max Mean Var. Min Max Mean Var.

Random
sampling I1

0.470 0.567 0.519 0.016 0.454 0.600 0.519 0.022 0.409 0.623 0.521 0.033

Stratified
random
sampling I2

0.506 0.537 0.519 0.009 0.487 0.547 0.519 0.017 0.466 0.593 0.520 0.026

Systematic
sampling I3

0.488 0.544 0.519 0.008 0.478 0.559 0.519 0.012 0.453 0.597 0.519 0.021

Zoned sampling
I4

0.495 0.547 0.520 0.009 0.484 0.557 0.519 0.011 0.455 0.572 0.520 0.017

Note: the true proportion of irrigated cultivated land is 0.5195.

Table 4. Design effects due to different methods of sampling the proportion of irrigated cultivated
land in Shandong province in 2000 (R00).

Design effect r = 3, f = 1/9 r = 4, f = 1/16 r = 6, f = 1/36

Var(I1)/Var(I2) 1.7692 1.3005 1.2472
Var(I1)/Var(I3) 1.9167 1.8595 1.6009
Var(I1)/Var(I4) 1.8089 1.8908 1.8920

540 J. Wang et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
I
n
s
t
 
o
f
 
G
e
o
g
r
a
p
h
i
c
a
l
 
S
c
i
e
n
c
e
s
 
&
 
N
a
t
u
r
a
l
 
R
e
s
o
u
r
c
e
s
 
R
e
s
e
a
r
c
h
]
 
A
t
:
 
0
8
:
0
5
 
1
7
 
M
a
r
c
h
 
2
0
1
0



Systematic sampling has been recommended for spatial surveys by previous studies. Its
superiority to random sampling is well established and although its superiority to stratified
random sampling is not as clear-cut, much of the evidence (both theoretical and empirical)
indicates that it is to be preferred. In this study, we have shown both the benefits and dangers
of introducing a higher level of stratification which we call zoning and which is designed to
match the spatial heterogeneity in the mean of the real surface. The benefits are most evident
when the choice of zones coincides closely with that heterogeneity. From the empirical
studies reported here it would seem that knowledge acquired from earlier surveys, and
possibly pilot surveys, are the best guide to that heterogeneity and it may be dangerous to
depend too much on what may appear to be plausible indicators of heterogeneity – such as
altitude in the first example.

Extra effort may be required to implement zoning so any extra costs will need to be
weighed against the benefits. The sampler needs to be sure that the underlying heterogeneity
is properly understood and captured in the choice of zones. In that case the extra cost (in
terms of constructing the zones and implementing the sampling strategy in accordance with
that partitioning) relative to the improvement in sampling efficiency seems to be a price
worth paying. We noted that the gains from zoning were most evident when the sampling
fraction was small, implying a sparse distribution of sample points. This suggests that zoning
may be particularly useful if the costs of taking a sample are high so that the number of
sample points needs to be kept as small as possible whilst still ensuring that the aims of the
survey are met. It would be interesting to compare results obtained by this method with, for
example, the method of Van Groenigen et al. (1999), which combines systematic sampling
with a few additional clustered observations taken around a few randomly selected points
where the additional sampling is based on pre-zoning.

The results presented here are based on raster data sets. GIS researchers work with other
types of data as well. Although data in vector format for example might present some
additional complications in terms of sample selection we conjecture that the main results
identified here will still apply. There may also be value in exploring the extension of these
methods to other types of problems such as map reconstruction through spatial interpolation
where the distribution of the attribute is heterogeneous. This reflects one of the core interests
of GIS researchers, namely capturing spatial differentiation. An attribute may be expensive
to collect and so efficient methods are needed to produce maps from a comparatively sparse
network of sample sites.
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